16 research outputs found

    From Unimodal to Multimodal: improving the sEMG-Based Pattern Recognition via deep generative models

    Full text link
    Multimodal hand gesture recognition (HGR) systems can achieve higher recognition accuracy. However, acquiring multimodal gesture recognition data typically requires users to wear additional sensors, thereby increasing hardware costs. This paper proposes a novel generative approach to improve Surface Electromyography (sEMG)-based HGR accuracy via virtual Inertial Measurement Unit (IMU) signals. Specifically, we trained a deep generative model based on the intrinsic correlation between forearm sEMG signals and forearm IMU signals to generate virtual forearm IMU signals from the input forearm sEMG signals at first. Subsequently, the sEMG signals and virtual IMU signals were fed into a multimodal Convolutional Neural Network (CNN) model for gesture recognition. To evaluate the performance of the proposed approach, we conducted experiments on 6 databases, including 5 publicly available databases and our collected database comprising 28 subjects performing 38 gestures, containing both sEMG and IMU data. The results show that our proposed approach outperforms the sEMG-based unimodal HGR method (with increases of 2.15%-13.10%). It demonstrates that incorporating virtual IMU signals, generated by deep generative models, can significantly enhance the accuracy of sEMG-based HGR. The proposed approach represents a successful attempt to transition from unimodal HGR to multimodal HGR without additional sensor hardware

    Text to realistic image generation with attentional concatenation generative adversarial networks.

    Get PDF
    In this paper, we propose an Attentional Concatenation Generative Adversarial Network (ACGAN) aiming at generating 1024 × 1024 high-resolution images. First, we propose a multilevel cascade structure, for text-to-image synthesis. During training progress, we gradually add new layers and, at the same time, use the results and word vectors from the previous layer as inputs to the next layer to generate high-resolution images with photo-realistic details. Second, the deep attentional multimodal similarity model is introduced into the network, and we match word vectors with images in a common semantic space to compute a fine-grained matching loss for training the generator. In this way, we can pay attention to the fine-grained information of the word level in the semantics. Finally, the measure of diversity is added to the discriminator, which enables the generator to obtain more diverse gradient directions and improve the diversity of generated samples. The experimental results show that the inception scores of the proposed model on the CUB and Oxford-102 datasets have reached 4.48 and 4.16, improved by 2.75% and 6.42% compared to Attentional Generative Adversarial Networks (AttenGAN). The ACGAN model has a better effect on text-generated images, and the resulting image is closer to the real image

    Monitoring Cropping Intensity Dynamics across the North China Plain from 1982 to 2018 Using GLASS LAI Products

    No full text
    China is a large grain producer and consumer. Thus, obtaining information about the cropping intensity (CI) in cultivated land, as well as understanding the intensified utilization of cultivated land, is important to ensuring an increased grain production and food security for China. This study aims to detect and map the changes in CI over a period of 36 years across China’s core grain-producing area—the North China Plain (NCP)— using remotely sensed leaf area index (LAI) time series data acquired by the Global LAnd Surface Satellite (GLASS) products. We first selected 2132 sample points that consisted entirely, or almost entirely, of cultivated cropland from all pixels; the biennial LAI curves for the sample points were then extracted; the Savitzky–Golay filter and second-order difference algorithm were then applied to reconstruct the biennial LAI curves and obtain the number of peaks in these curves. In addition, the multiple cropping index (MCI) was calculated to represent the CI. Finally, the spatial distribution of the CI of cultivated land on the NCP was mapped from 1982 to 2018 using a geo-statistical kriging approach. Spatially, the results indicate that the CI of cultivated land over the NCP exhibits a distinct spatial pattern that conforms to “high in the south, low in the north”. The single cropping system (SCS) mainly occurred in the higher latitude area ranging from 37.04°N to 42.54°N, and the double cropping system (DCS) mainly existed in the lower latitude area between 31.95°N and 39.97°N. Temporally, the CI increased over the study period, but there were some large fluctuations in CI from 1982 to 1998 and it maintained relatively stable since 2000. Across the NCP, 68.14% of cultivated land experienced a significant increase in CI during the 36-year period, while only 3.87% showed a significant decrease. We also found that, between 1982 and 2018, the northern boundary of the area for DCS underwent a significant westward expansion and northward movement. Our results show a good degree of consistency with statistical data and previous research and also help to improve the reliability of satellite-based identification of CI using low spatial resolution LAI products. The results provide important information that can be used for analyzing and evaluating the rational utilization of cultivated land resources; thus, ensuring food security and realizing agricultural sustainability not only for the NCP, but for China as a whole. These results also highlight the value of satellite remote sensing to the long-term monitoring of cropping intensity at large scales

    Text to realistic image generation with attentional concatenation generative adversarial networks

    Get PDF
    In this paper, we propose an Attentional Concatenation Generative Adversarial Network (ACGAN) aiming at generating 1024 Ă— 1024 high-resolution images. First, we propose a multilevel cascade structure, for text-to-image synthesis. During training progress, we gradually add new layers and, at the same time, use the results and word vectors from the previous layer as inputs to the next layer to generate high-resolution images with photo-realistic details. Second, the deep attentional multimodal similarity model is introduced into the network, and we match word vectors with images in a common semantic space to compute a fine-grained matching loss for training the generator. In this way, we can pay attention to the fine-grained information of the word level in the semantics. Finally, the measure of diversity is added to the discriminator, which enables the generator to obtain more diverse gradient directions and improve the diversity of generated samples. The experimental results show that the inception scores of the proposed model on the CUB and Oxford-102 datasets have reached 4.48 and 4.16, improved by 2.75% and 6.42% compared to Attentional Generative Adversarial Networks (AttenGAN). The ACGAN model has a better effect on text-generated images, and the resulting image is closer to the real image

    In-Depth Analysis of the Structure and Properties of Two Varieties of Natural Luffa Sponge Fibers

    No full text
    The advancement in science and technology has led to luffa sponge (LS) being widely used as a natural material in industrial application because of its polyporous structure and light texture. To enhance the utility of LS fibers as the reinforcement of lightweight composite materials, the current study investigates their water absorption, mechanical properties, anatomical characteristics and thermal performance. Hence, moisture regain and tensile properties of LS fiber bundles were measured in accordance with American Society for Testing and Materials (ASTM) standards while their structural characteristics were investigated via microscopic observation. Scanning electron microscopy (SEM) was used to observe the surface morphology and fractured surface of fiber bundles. The test results show that the special structure where the phloem tissues degenerate to cavities had a significant influence on the mechanical properties of LS fiber bundles. Additionally, the transverse sectional area occupied by fibers in a fiber bundle (SF), wall thickness, ratio of wall to lumen of fiber cell, and crystallinity of cellulose had substantial impact on the mechanical properties of LS fiber bundles. Furthermore, the density of fiber bundles of LS ranged within 385.46–468.70 kg/m3, significantly less than that of jute (1360.40 kg/m3) and Arenga engleri (950.20 kg/m3). However, LS fiber bundles demonstrated superior specific modulus than Arenga engleri

    Dynamic multi-dimensional identification of Yunnan droughts and its seasonal scale linkages to the El Niño-Southern Oscillation

    No full text
    Study region: Yunnan Province, China. Study focus: Yunnan Province (YP) is affected by frequent droughts that severely affect local agriculture and the ecological environment. Therefore, the identification of droughts and an analysis of their driving factors are of significant importance for mitigating local drought losses and guiding agricultural practices. This study identified the spatiotemporal distribution and dynamic changes in drought events over YP (period 1961–2018) using the severity-area-duration method. The impact of El Niño-Southern Oscillation (ENSO) on seasonal droughts and their lag period were also quantified by employing the sliding correlation coefficient and cross-wavelet analysis method. New hydrological insights for the region: 74 drought events were identified during 1961–2018 in YP, which were mainly short-duration that occurred in the 1980 s and 2000 s, and most drought centers are located over the northern and eastern parts of YP. We found that a significant correlation and different lag periods exist between Oceanic Niño Index (ONI) and seasonal precipitation in YP. Spring droughts mainly occurred in El Niño years during the 1980 s and the 1990 s, whilst winter droughts mainly occurred in La Niña years during the 1990 s and the 2000 s with a lag period of up to 12 months

    In Utero Exposure to Diethylhexyl Phthalate Affects Rat Brain Development: A Behavioral and Genomic Approach

    No full text
    Diethylhexyl phthalate (DEHP) is one of the most widely utilized phthalate plasticizers. Previous studies have demonstrated that gestational or postnatal DEHP exposure induced adverse effects on rat brain development and function. In this study, we investigated the effects of gestational DEHP exposure on gene expression profiling in neonatal rat brain and cognitive function change at adulthood. Adult Sprague Dawley dams were orally treated with 10 or 750 mg/kg DEHP from gestational day 12 to 21. Some male pups were euthanized at postnatal day 1 for gene expression profiling, and the rest males were retained for water maze testing on postnatal day (PND) 56. DEHP showed dose-dependent impairment of learning and spatial memory from PND 56 to 63. Genome-wide microarray analysis showed that 10 and 750 mg/kg DEHP altered the gene expression in the neonatal rat brain. Ccnd1 and Cdc2, two critical genes for neuron proliferation, were significantly down-regulated by DEHP. Interestingly, 750 mg/kg DEHP significantly increased Pmch level. Our study demonstrated the changed gene expression patterns after in utero DEHP exposure might partially contribute to the deficit of cognitive function at adulthood

    Spatial and Temporal Characterization of Drought Events in China Using the Severity-Area-Duration Method

    No full text
    Global climate change not only affects the processes within the water cycle but also leads to the frequent occurrences of local and regional extreme drought events. In China, spatial and temporal characterizations of drought events and their future changing trends are of great importance in water resources planning and management. In this study, we employed self-calibrating Palmer drought severity index (SC-PDSI), cluster algorithm, and severity-area-duration (SAD) methods to identify drought events and analyze the spatial and temporal distributions of various drought characteristics in China using observed data and CMIP5 model outputs. Results showed that during the historical period (1961–2000), the drought event of September 1965 was the most severe, affecting 47.07% of the entire land area of China, and shorter duration drought centers (lasting less than 6 months) were distributed all over the country. In the future (2021–2060), under both representative concentration pathway (RCP) 4.5 and RCP 8.5 scenarios, drought is projected to occur less frequently, but the duration of the most severe drought event is expected to be longer than that in the historical period. Furthermore, drought centers with shorter duration are expected to occur throughout China, but the long-duration drought centers (lasting more than 24 months) are expected to mostly occur in the west of the arid region and in the northeast of the semi-arid region

    Analysis of flash droughts in China using machine learning

    No full text
    The term "flash drought"describes a type of drought with rapid onset and strong intensity, which is co-affected by both water-limited and energy-limited conditions. It has aroused widespread attention in related research communities due to its devastating impacts on agricultural production and natural systems. Based on a global reanalysis dataset, we identify flash droughts across China during 1979-2016 by focusing on the depletion rate of weekly soil moisture percentile. The relationship between the rate of intensification (RI) and nine related climate variables is constructed using three machine learning (ML) technologies, namely, multiple linear regression (MLR), long short-term memory (LSTM), and random forest (RF) models. On this basis, the capabilities of these algorithms in estimating RI and detecting droughts (flash droughts and traditional slowly evolving droughts) were analyzed. Results showed that the RF model achieved the highest skill in terms of RI estimation and flash drought identification among the three approaches. Spatially, the RF-based RI performed best in southeastern China, with an average CC of 0.90 and average RMSE of the 2.6 percentile per week, while poor performances were found in the Xinjiang region. For drought detection, all three ML technologies presented a better performance in monitoring flash droughts than in conventional slowly evolving droughts. Particularly, the probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI) of flash drought derived from RF were 0.93, 0.15, and 0.80, respectively, indicating that RF technology is preferable in estimating the RI and monitoring flash droughts by considering multiple meteorological variable anomalies in adjacent weeks to drought onset. In terms of the meteorological driving mechanism of flash drought, the negative precipitation (P) anomalies and positive potential evapotranspiration (PET) anomalies exhibited a stronger synergistic effect on flash droughts compared to slowly developing droughts, along with asymmetrical compound influences in different regions of China. For the Xinjiang region, P deficit played a dominant role in triggering the onset of flash droughts, while in southwestern China, the lack of precipitation and enhanced evaporative demand almost contributed equally to the occurrence of flash drought. This study is valuable to enhance the understanding of flash droughts and highlight the potential of ML technologies in flash drought monitoring
    corecore